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The optical lattice is a great tool for trapping atoms for atomic spectroscopy, however by trapping the atoms,
it shifts their energy levels. We describe a computational technique for finding ’magic wavelengths’ for a
transition where both energy levels involved in the transition are shifted by the same energy, irrespective of the
electric field strength. Rubidium-85 is used as our atom of interest and compute the magic wavelengths for the
5P1/2 → 6S1/2 and 5P3/2 → 6S1/2 transitions.

1. INTRODUCTION

Precise time and frequency measurement is an extremely im-
portant concept for modern physics and technology. Our best
methods to get such a precise measurement are atomic clocks
[1]. Using a laser to provoke electronic transitions in an atom
proves to be an extremely precise method of timekeeping, pro-
vided a precise enough laser can be created [2]. One example
of this is in Rubidium, where a clock transition could be from
the 5P1/2 or 5P3/2 states to the 6S1/2 state [3]. These are
shown in figure 1, as well as electric dipole transitions to and
from these two states. To make a time measurement, this laser
is tuned to the atomic transition frequency, for example by
using the fluorescence of natural decay and a feedback loop
which changes the laser frequency. Once the laser is on reso-
nance with the transition frequency, the precise frequency of
the laser is known and so this frequency can be counted to
obtain a time measurement. Atomic clocks have many uses,
for example: GPS (the Global Positioning System); to set the
international time and frequency standard; and to control fre-
quencies for fiber-optic internet communications.

FIG. 1: A diagram of some of the energy levels of Rubidium
with energies greater than its ground state (5S). Drawn also
are all electric dipole transitions between these levels, and
labelled are the selection rules for such a transition. For a
more accurate and complete version of this, see figure 5.

To get the most precise atomic clocks however, the atoms
which are probed must be extremely cold. This must be the
case so that the atoms’ movement is suppressed, so that they

can probed by the laser for a long time to get a high averaging
time. The low temperature also reduces the linewidth of the
transition from Doppler broadening. The most common way
to cool atoms is with laser cooling, which is very versatile,
but can only cool atoms to a minimum Doppler temperature
[4]. Another method - used in clocks such as the aluminium
single-ion clock - is the Linear Paul Trap [5], but this trap
only works for ions and has limitations on accuracy due to the
Allan variance [3].

FIG. 2: A pictorial representation of a 2D optical lattice. The
red spheres represent atoms and the blue background

represents the potential of the trap. Credit: NIST, July 6
2009, ref 09PHY016.

This report will focus on a more novel technique - the optical
lattice [6]. These work by having counter-propagating lasers
in each cardinal direction which create standing waves of in-
tensity, and via the dipole force [7], these intensity-standing
waves correspond to potential standing waves. This is shown
in figure 2 and means that if an atom is pre-cooled (e.g. by
laser cooling) to lower than the maximum potential, it can be
loaded into the optical lattice. It will then oscillate around the
potential, and mostly there will only be one atom per well.
Cooling can be aided by techniques such as Sisyphus cooling
[4], and evaporation [8], which leaves fewer atoms in the trap,
but most of the atoms are in their motional ground state. This
is called the Lamb-Dick regime [9], and is when an optical
clock has the highest precision.

Unfortunately, the dipole force which constrains the atoms to
the trap also shifts the energy levels via the AC stark effect [7].
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This AC stark effect gives an energy level shift ∆E, described
by

∆E = −1

2
(E)2αJ , (1)

where E is the electric field strength, and αJ is the polariz-
ability of the state with total angular momentum J (calculated
with equations 3 and 4).

Since the energy shift depends on J , each of the energy levels
is shifted by a different amount, which means that the clock
frequency transition wavelength would be different for atoms
in the optical lattice. This is a problem as this transition must
be constant for an accurate measurement. However, there is a
solution - ’magic’ wavelengths can be found, at which the two
levels of the clock transition have their energies shifted by the
same amount, so that the transition frequency between them
stays invariant.

The polarizability is a complex term, but a first-order per-
turbation theory derivation can be completed, as in [10].
This means that only electric dipole transitions are consid-
ered, which is appropriate as magnetic dipole and electric
quadrupole transitions are a lot less probable, so contribute
minimally to the polarizability. Finally, then, the polarizabil-
ity is given by

αJ = αν0(ω) + αν2(ω), (2)

where αν0(ω) is the static polarizability of atomic state ν and
αν2(ω) is the tensor polarizability of atomic state ν. Both of
these depend on the frequency ω of the lattice lasers. Then,
the static polarizability αν0 is given by

αν0(ω) =
2

3(2jν + 1)

∑
k

〈k||d||ν〉2 (Ek − Eν)

(Ek − Eν)2 − ω2
, (3)

where jk and jν are the total angular momenta of states k and
ν, 〈k||d||ν〉 is the reduced matrix element (RME) of the tran-
sition between states k and ν, and Ek and Eν are the energies
of states k and ν.

Then, the tensor polarizability is given by

αν2(ω) =− 4C
∑
k

(−1)jν+jk+1

{
jν 1 jk
1 jν 2

}

×
3m2

j − jν(jν + 1)

jν(2jν − 1)
× 〈k||d||ν〉

2
(Ek − Eν)

(Ek − Eν)2 − ω2
,

C =

(
5jν(2jν − 1)

6(jν + 1)(2jν + 1)(2jν + 3)

) 1
2

,

(4)
where jk, jν , Ek, Eν , and 〈k||d||ν〉 have the same meanings
as above, mj is the total orbital quantum number correspond-
ing to jν , and {...} is the Wigner-6j symbol [11].

These expressions are complex, but the main takeaways from
them are as follows:

• (Ek − Eν) is equivalent to the transition frequency,
meaning that when the laser frequency ω is tuned to this

value, the polarizability would reach infinity. This is
unphysical, and corresponds to the fact that if the trap-
ping laser wavelength was on-resonance with a transi-
tion frequency, all the atoms would be forced to transi-
tion into a different state, rather than be trapped by the
laser.

• 〈k||d||ν〉 represents the strength of a transition, and so
is greater for more probabilistic transitions. This falls
off as the quantum number n increases, meaning we
only have to consider a finite number of states k for an
accurate final polarizability.

• The remainder of equations 3 and 4 equate to constants,
based on the quantum numbers of the state under con-
sideration, so the polarizability is dependent on the two
above points.

If we can compute this polarizability for a number of states,
we can find points where it is the same value for our two
transitions of interest: 5P1/2 → 6S1/2; and 5P3/2 → 6S1/2,
which from this point will be coloured red, green, and blue for
clarity.

2. METHODS

These calculations of polarizability require computaional
power. We use python to find the polarizability for many dif-
ferent wavelengths of light, and then numerical techniques are
utilised to find the intersections of these curves.

As seen in equations 3 and 4, the energy and RME for each
energy level considered is required. For this, we use ARC, an
alkali atom calculator [12], which uses the method of quantum
defects [12] to generate energies for each state. Then, for each
of the energy levels considered (5P1/2, 5P3/2, and 6S1/2),
and for each wavelength in the range considered, all other en-
ergy levels up to n = 15 are summed over, using equations 3
and 4. Finally, we find the points where the curves cross, and
use linear interpolation to find each magic wavelength. The
gradient of each magic wavelength can also be found, which
will be useful when deciding which wavelengths to use.

To complete the process, these magic wavelengths can be
compared with the wavelengths of some commonly available
lasers, but this is more useful when a practical implementation
of the optical lattice is desired. This paper simply shows the
feasibility of the techniques used.

3. RESULTS

Figures 3 and 4 show the polarizability of the discussed states
over the range 550-650 nm. This range is picked as it is a
common range for laboratory-grade lasers. The polarizabil-
ity - and not the energy shift - is given because the energy
shift differs based on the electric field, which differs based
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FIG. 3: The polarizability of the 5P1/2 (dashed red) and
6S1/2 (solid blue) states. Magic wavelengths are plotted as

black points.

FIG. 4: The polarizability of the 5P3/2[mj = ±3/2] (dashed
green), 5P3/2[mj = ±1/2] (dashed-dotted red), and 6S1/2

(solid blue) states. Magic wavelengths are plotted as black
points.

on where the atom currently is in the optical lattice’s poten-
tial well. Note that this polarizability is given in atomic units
(a.u.) for ease of computation, and can be converted to SI
(Hz m2 V−2) by multiplying by 2.48832×10−8[10]. The ver-
tical scale is also reversed, as negative polarizability corre-
sponds to a positive energy shift, as in equation 1.

Figures 6 and 7 show the polarizability of the discussed states
over another common laser wavelength range: 1200-1600 nm.
All of these four figures have magic wavelengths shown in
black, which are tabulated in table I.

Figure 5 is provided to help understand where the resonances
in figures 3, 4, 6, 7 come from. The energy and transition
wavelength of light is related by E ∝ λ−1. This means that a
transition of 2 eV corresponds to a wavelength of 621 nm, and
1 eV to 1240 nm. Drawn on figure 5 are the 550-650 nm and
1200-1600 nm ranges, re-expressed as ranges of energy. It can
be seen, then, that each dotted resonance on figures 3, 4, 6, 7

FIG. 5: A diagram of the energy levels used in the derivation.
Some states are labelled, and they continue in this pattern up
to n = 15. Also shown are the ranges of wavelengths used in
the other figures in this paper. A shows the wavelength range

1200-1600 nm, and B shows the range 550-650 nm. Note
that each resonance in figures 3, 4, 6, 7 can be linked to a

transition in this graph, as shown in appendix B.

corresponds to the transition to an energy level in this range.
This is shown in greater detail in appendix B.

Figure 8 shows the results of the computation with various
different maximum energy levels considered. This illustrates
the numerical convergence of the technique, as as n increases,
the graph changes less and less, and more accurate values of
the magic wavelengths are converged upon. This is seen more
clearly in appendix A. For the final results, a maximum n of
n = 15 is used. This is good compromise between accuracy
and computation time.

4. DISCUSSION

This investigation shows that magic wavelengths can be found
for many transitions with relative ease. A lot of them, how-
ever, are unusable. This can be because of a few reasons,
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FIG. 6: The polarizability of the 5P1/2 (dashed red) and 6S1/2 (solid blue) states. Magic wavelengths are plotted as black
points.

FIG. 7: The polarizability of the 5P3/2[mj = ±3/2] (dashed green), 5P3/2[mj = ±1/2] (dashed-dotted red), and 6S1/2 (solid
blue) states. Magic wavelengths are plotted as black points.

and prompts the question ’What makes a good magic wave-
length?’

One reason a magic wavelength can be of poor quality is
because the gradient is far too steep, as with the values of
1290, 1291, and 1298 nm from table I. This is why these
were not mentioned in [3]. This means that unless the setup
were exactly tuned to the magic wavelength, a small electric
field would incite a large energy shift and the energy levels
would once again shift by a different amount, as is not desired.
Therefore, in our final consideration, magic wavelengths with
a very low gradient relative to the others are preferred.

Another reason a magic wavelength is considered unhelpful
is if it is too close to the transition wavelength of interest.
In this case, this is 1324 nm for the 5P1/2 → 6S1/2 tran-
sition and 1367 nm for the 5P3/2 → 6S1/2 transition (as
shown in table I). This wavelength is in the second (lower
energy) range which we consider. Therefore, the magic wave-
lengths of 1343, 1337, and 1331 nm might not be preferable
for an experiment where the transition probability must be

carefully controlled. In this case, a magic wavelength in the
550-650 nm range may be preferable. Finally, from a practi-
cal point of view, a good magic wavelength is also one which
is achievable by a modern laser system. For example, laser-
diodes can easily achieve wavelengths of 554 or 560 nm.

An interesting question to consider is whether a ’triple’ magic
wavelength can be found. This would be a wavelength where
three energy levels are shifted by the same amount. It would
be near-impossible to find a perfect one, where all three curves
cross at the same point, but given a large-enough precision, it
is not unreasonable that one could find a wavelength where
energy levels were energy-shifted by similar amounts. For
example, just in this report, there is a magic wavelength at
600 nm for the 5P1/2 → 6S1/2 transition and a magic wave-
length at 603 nm for the 5P3/2[mj = ±3/2] → 6S1/2 tran-
sition. These are also relatively low-gradient transitions, so a
laser tuned to 601 nm may be able to keep the relative shift of
these three levels quite similar. This is especially true if the
final electric field value is low, as the error in the energy shift
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(a) Only energy levels considered up to n = 7. The resonances here
correspond to transitions 5P1/2 → 7D3/2 and 5P1/2 → 6D3/2.

(b) Energy levels considered up to n = 8. The extra resonance is the
transition 5P1/2 → 8S1/2.

(c) Energy levels considered up to n = 9. The extra resonance is the
transition 5P1/2 → 9S1/2.

(d) Energy levels considered up to n = 15. There are no extra
resonances, but the graph has a subtly different shape than in figure 8c.

See appendix A for more clarity.

FIG. 8: A comparison of derivations with different maximum energy levels considered. Note, after the transitions exit the
wavelength range considered, increasing N has less and less of an effect on the graph. This is illustrated via an animated gif in

appendix A.

is proportional to (E)2 (see equation 1), so if the atoms were
in a motional ground state the optical lattice lasers could be
reduced in intensity to the point at which they only just con-
tain the atoms, and then experiments could be done involving
all of the 5P1/2, 6S1/2, and 5P3/2[mj = ±3/2] transitions.

Next, the numerical convergence of the results is briefly dis-
cussed. As seen in figure 8, with each new energy level con-
sidered, the final output graph changes. Appendix A shows
that each new energy level’s contribution diminishes as you
get to higher and higher n, but this alone is not enough to
conclude that that is the case. Consider what happens as n is
increased, in terms of what is seen in equations 3 and 4. As
larger n is reached, the term (Ek−Eν)−ω2 increases, as the
transition wavelength becomes further from the wavelength
range considered. Then, one must know what happens to the
〈k||d||ν〉2 term. This is more nuanced, but it can be proved
that this decreases for larger n, as transitions to larger n be-
come less and less probable. Combining these two results,

it can be seen that the as k (representing n) increases in the
sum, the term inside the sum will diminish. This shows that as
higher and higher n is considered, the contribution to the po-
larizability decreases. Therefore, we do not need to consider
infinite energy levels, but only use up to a sensible number,
like the n = 15 used in this report.

Finally, it is useful to consider avenues of further investi-
gation, and techniques which may have helped this report.
Firstly, the program could be further developed by comput-
ing energy levels of states from first principles, rather than
using [12]. This would have the benefit of being more robust
and being able to consider more different types of atoms, like
group 2 atoms, but also the results might end up being further
from reality, if for example instead the measured energy levels
were used.

Next, there is a question of considering higher maximum en-
ergy levels. We stop at n = 15 in this report to strike a balance
between accuracy and computation time, but if maximal accu-
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Magic Wavelength /
nm

Maximum gradient /
a.u. nm−1

Literature
wavelength / nm

5P1/2→ 6S1/2. Transition wavelength = 1324 nm

554 -14.1 -

560 -84.3 -

600 -11.9 595

612 -41.0 612

1291 -5050 -

1343 717 1342

1423 -189 1421

5P3/2[mj = ±3/2]→ 6S1/2. Transition wavelength = 1367 nm

559 -6.38 -

603 -4.30 -

1290 -1680 -

1298 -11,100 -

1337 915 1336

1456 -89.0 1453

5P3/2[mj = ±1/2]→ 6S1/2. Transition wavelength = 1367 nm

562 -27.6 -

569 -87.4 -

611 -36.0 -

624 -67.3 -

1291 -5050 -

1298 -58,900 -

1331 2240 1331

1464 -165 1461

TABLE I: Each of the magic wavelengths from figures
3, 4, 6, 7. Also shown are the gradient of the steeper

polarizability curve at this wavelength, for comparison. Each
transition also has written the transition wavelength.

racy were required, a lot higher maximal energy levels could
be considered. However, due to diminishing returns, this does
become a fruitful activity at a certain point. As such n = 15
is deemed a suitable stopping point.

Finally, a branching path would be to look into hyperfine tran-
sitions. These types of transitions are more commonly used in
atomic clocks, like the caesium clock, so could be more prac-
tically useful to know about. This would involve a slightly
different derivation of equation 1, as the nuclear spin would
have to be taken into account.

5. CONCLUSIONS

In conclusion, it is found that a first-order perturbation theory
calculation in order to compute polarizabilities works well for
finding magic wavelengths, and many can be found. The best
of these are 600, 603, and 562 nm, which are far from the tran-
sition wavelength of interest, and also far from any transition
resonances, to minimise the polarizability-gradient. This tech-
nique, however, only works very well for a single transition of
interest, and works to an acceptable precision for two tran-
sitions. Further investigation could find magic wavelengths
for different atoms, or work on improving the accuracy of the
results computed here.
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Appendix A: Animated Gif

Figure 8 shows a few different values of maximum energy
level n considered. For a gif of a range of n from n = 5 to
n = 20 visit:

https://alifeee.co.uk/durham_physics/
alt-max-n-gif.gif

Appendix B: Resonances

There are many resonances in figures 3, 4, 6, 7, corresponding
to energy-level transitions in figure 5. They are listed in table
II.

Transition Wavelength / nm

Figure 3: 5P1/2→ 6S1/2 from 550-650 nm.

5P1/2→ 9S1/2 558.1

5P1/2→ 7D3/2 565.2

5P1/2→ 8S1/2 607.6

5P1/2→ 6D3/2 621.7

Figure 4: 5P3/2→ 6S1/2 from 550-650 nm.

5P3/2 [mj = ±1/2]→ 9S1/2 566.2

5P3/2→ 7D3/2 573.2

5P3/2 [mj = ±1/2]→ 8S1/2 616.7

5P3/2→ 6D3/2 630.8

Figure 6: 5P1/2→ 6S1/2 from 1200-1600 nm.

6S1/2→ 7P3/2 1292.5

6S1/2→ 7P1/2 1298.5

6S1/2→ 5P1/2 1324.1

6S1/2→ 5P3/2 1367.0

5P1/2→ 4D3/2 1475.9

Figure 7: 5P3/2→ 6S1/2 from 1200-1600 nm.

6S1/2→ 7P3/2 1292.5

6S1/2→ 7P1/2 1298.5

6S1/2→ 5P1/2 1324.1

6S1/2→ 5P3/2 1367.0

5P3/2→ 4D5/2 1529.5

TABLE II: Tabulated are the resonances (dotted grey lines)
from figures 3, 4, 6, 7. These are listed in order of

wavelength, so are ordered left-to-right on the graphs.
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